设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
问题描述:
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
答
(1)a2=4,方法就是取n=2,S2=a1+a2来算(2)2Sn=na(n+1)-n^3/3-n^2-2n/32an=Sn-S(n-1)an=n*a(n+1)/n+1-nan/n=a(n+1)/n+1-11=a(n+1)/n+1-an/n{an/n}成,首项为1,公差为1的等差数列这是我在静心思考后得出的结论,...