若函数F(x)=x的三次方-3*x+a有3个不同的零点,则a的取值范围是…

问题描述:

若函数F(x)=x的三次方-3*x+a有3个不同的零点,则a的取值范围是…

设g(x)=x^3,h(x)=3x-a
f(x)=x^3-3x+a有三个不同零点
即g(x)与h(x)有三个交点
g'(x)=3x^2
h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x^2=3,得x=1,或x=-1
当x=1时,得a=2
当x=-1时,得a=-2
则-2