已知二次函数f(x)=ax²+bx+1为偶函数,且f(-1)=-1
问题描述:
已知二次函数f(x)=ax²+bx+1为偶函数,且f(-1)=-1
1求函数f(x)的解析式 2若函数g(x)=f(x)+(2-k)x在区间[-2,2]上单调递减,求实数K的取值范围,(函数在定义域关于原点对称,f(-x)=f(x)是偶函数)
答
1、由f(x)是偶函数,得f(-x)=f(x),从而可得b=0,f(x)=ax²+1,
又f(-1)=-1,所以a= -2,故f(x) = -2x²+1.
2、g(x)=f(x) +(2-k)x= -2x²+ (2-k)x+1的对称轴为x= (2-k)/4,
由g(x)在区间[-2,2]上单调递减,得(2-k)/4≤ -2,解得k≥10.