已知△ABC中,(tanA+1)(tanB+1)=2,AB=2,求:(1)角C的度数;(2)求三角形ABC面积的最大值.

问题描述:

已知△ABC中,(tanA+1)(tanB+1)=2,AB=2,求:
(1)角C的度数;
(2)求三角形ABC面积的最大值.

记角A、角B、角C的对边分别为a、b、c
(1)tanA+tanB+tanAtanB+1=2,即tanA+tanB=1-tanAtanB,
∵1-tanAtanB≠0,
∴tan(A+B)=

tanA+tanB
1-tanAtanB
=1,
即tanC=tan[π-(A+B)]=-tan(A+B)=-1,
∵C∈(0,π),∴C=
4

(2)由余弦定理a2+b2-2abcosC=c2得:
a2+b2+2×
2
2
ab=4,即a2+b2+
2
ab=4,
而4-
2
ab=a2+b2≥2ab,即ab≤4-2
2

所以S△ABC=
1
2
absinC=
2
4
ab≤
2
4
(4-2
2
)=
2
-1.