如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
问题描述:
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
答
知识点:本题考查了全等三角形的判定与性质,矩形的判定与性质,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.
证明:如图,过点B作BF⊥CE于F,
∵CE⊥AD,
∴∠D+∠DCE=90°,
∵∠BCD=90°,
∴∠BCF+∠DCE=90°,
∴∠BCF=∠D,
在△BCF和△CDE中,
,
∠BCF=∠D ∠CED=∠BFC=90° BC=CD
∴△BCF≌△CDE(AAS),
∴BF=CE,
又∵∠A=90°,CE⊥AD,BF⊥CE,
∴四边形AEFB是矩形,
∴AE=BF,
∴AE=CE.
答案解析:过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证,
考试点:全等三角形的判定与性质;矩形的判定与性质.
知识点:本题考查了全等三角形的判定与性质,矩形的判定与性质,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.