已知f(x)是定义在R上的函数,对于任意x,y属于R都有f(x+y)+(x-y)=2f(x)f(y),且f(o)不等于0
问题描述:
已知f(x)是定义在R上的函数,对于任意x,y属于R都有f(x+y)+(x-y)=2f(x)f(y),且f(o)不等于0
(1)求证:f(0)=1
(2)判断函数f(x)的奇偶性
答
1.令x=y=0,所以由题意:f(0)+f(0)=2(f(o))^2---->2f(0)=2(f(o))^2由于f(0)≠0---->f(0)=12.2f(x)f(y)=f(x+y)+f(x-y)2f(x)f(-y)=f(x-y)+f(x+y)--->2f(x)f(y)=2f(x)f(-y)--->f(0)f(y)=f(0)f(-y)--->f(y)=f(-y)由y的任...