等边三角形ABC,D、F是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形

问题描述:

等边三角形ABC,D、F是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形

因为CD=BF所以,AF=BD∠BAD=∠CAFBA=CA所以,△BAD≌△CAF所以,AD=CF而由等边三角形ADE知:AD=DE所以,DE=CF∠BCF=∠BCA-∠CAF=60-∠CAF=60-∠BAD=∠CAD∠BDE=∠BDA-∠EDA=(∠CAD+∠ACD)-∠EDA=(∠CAD+60)-60=∠CAD所以,...