(1/2)在三角形ABC中,角A,B,C所对的边分别为a,b,c,a=2根号2b.sinB=1/3,(1)求sinA的值(2)若A为钝角...
问题描述:
(1/2)在三角形ABC中,角A,B,C所对的边分别为a,b,c,a=2根号2b.sinB=1/3,(1)求sinA的值(2)若A为钝角...
(1/2)在三角形ABC中,角A,B,C所对的边分别为a,b,c,a=2根号2b.sinB=1/3,(1)求sinA的值(2)若A为钝角,b=1
答
(1) a=2√2b
由正弦定理
a/sinA=b/sinB
sinA=2√2sinB=2√2*(1/3)=2√2/3
(2) 求面积
b=1,a=2√2
A钝角,cosA=-1/3
sinC=sin(A+B)=sinAcosB+cosAsinB=(2√2/3)*(2√2/3)+(-1/3)(1/3)=7/9
S=(absinC)/2=7√2/9