关于 分布函数和概率密度得题1、已知二维随机变量(X,Y)具有概率密度f(x,y)= 2e-(2x+y),x>0,y>00,其他求 联合分布函数F(x,y)边缘概率密度fx(x)和fy(y)判断X于Y是否相互独立.

问题描述:

关于 分布函数和概率密度得题
1、已知二维随机变量(X,Y)具有概率密度f(x,y)= 2e-(2x+y),x>0,y>0
0,其他
求 联合分布函数F(x,y)边缘概率密度fx(x)和fy(y)
判断X于Y是否相互独立.