如图所示,△ABC中,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
问题描述:
如图所示,△ABC中,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
答
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD.
∵DE∥BC,交AB于点E,
∴∠CBD=∠BDE
∴∠EBD=∠BDE.
∵∠BDC是△ABD的外角,
∴∠A+∠ABD=∠BDC,
∴∠EBD=∠BDC-∠A=95°-60°=35°,
∴∠BDE=DBE=35°,
∴∠BED=180°-∠EBD-∠EDB=180°-35°-35°=110°.