已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn.(1)求数列{an}的通项公式;(2)若bn=2Knan,求数列{bn}的前n项和Tn.

问题描述:

已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn
(1)求数列{an}的通项公式;
(2)若bn2Knan,求数列{bn}的前n项和Tn

(1)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,
∴Sn=n2+2n(n∈N*).…(3分)
当n=1时,a1=S1=1+2=3;
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1   ①
当n=1时,a1=3也满足①式.
∴数列{an}的通项公式为an=2n+1.…(6分)
(2)由f(x)=x2+2x求导可得f′(x)=2x+2.
∵过点Pn(n,Sn)的切线的斜率为Kn
∴Kn=2n+2.…(8分)
又∵bn2Knan
∴bn=22n+2(2n+1)=4(2n+1)•4n
∴Tn=4×3×41+4×5×42+4×7×43+…+4(2n+1)•4n
由①×4得:∴4Tn=4×3×42+4×5×43+4×7×44+…+4(2n+1)•4n+1
①-②得-3Tn=4×(3×4+2×42+2×43+…+2×4n-(2n+1)4n+1
=4×(12+2×

16×(1−4n−1)
1−4
-(2n+1)4n+1)=
4
3
1
3
×(6n+1)4n+1

所以 Tn=
1
9
×(6n+1)44n+1
4
9
…(12分)
答案解析:(1)根据题中已知条件,先求出数列{an}的前n项和Sn的表达式,进而求得数列{an}的通项公式;
(2)根据题中条件求出Kn的表达式,结合前面求得的数列{an}的通项公式,即可求得数列{bn}的通项公式,进而可以求出数列{bn}的前n项和Tn
考试点:数列与函数的综合.
知识点:本题主要考查了数列与函数的综合应用,考查了学生的计算能力和对数列与函数的综合掌握,是各地高考的热点,解题时注意整体思想和转化思想的运用,属于中档题.