已知抛物线C1:x^2+by=b^2经过椭圆C2:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点 1、求C2离心率
问题描述:
已知抛物线C1:x^2+by=b^2经过椭圆C2:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点 1、求C2离心率
2、设Q(3,b),又M、N为C1与C2不在y轴上的两个交点,若三角形QMN的重心在抛物线C1上,求C1、C2方程
答
1)椭圆焦点坐标为F(正负c,0),代入C2方程得c^2=b^2=a^2-c^2,所以离心率=c/a=√2/22>由(1)得 a^2=2b^2 把变过之后的椭圆方程与抛物线的联立 得 2y^2-by^2-b^2=o 得y=-b/2或b(由图可知应舍去)所以 x=正负(√6/2)b ...