已知幂函数f(x)=x^(m^2-2m-3),m属于Z为偶函数,且区间(0,正无穷大)上是减函数,求y的解析式并讨论单调性

问题描述:

已知幂函数f(x)=x^(m^2-2m-3),m属于Z为偶函数,且区间(0,正无穷大)上是减函数,求y的解析式并讨论单调性

首先,由减函数有 m²-2m-3=(m-3)(m+1)-1而f为偶函数千说明m²-2m-3=(m-3)(m+1)为偶数
则m为奇数,所以只能有m=1
所以f(x)=x^(-4)
在(0,+∞)为减函数
在(-∞,0)为增函数