若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=______.
问题描述:
若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=______.
答
由于f(x)的定义域为R,值域为(-∞,4],可知b≠0,∴f(x)为二次函数,f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(x)为偶函数,∴其对称轴为x=0,∴-2a+ab2b=0,∴2a+ab=0,∴a=0或b=-2.若a=0,则f(x...
答案解析:利用函数的定义域、值域的特点得到函数是二次函数;据函数是偶函数关于y轴对称及二次函数的对称轴公式得到方程求出a,b的值;将求出的值代入二次函数解析式求其值域验证值域是否是(-∞,4].
考试点:函数解析式的求解及常用方法.
知识点:本题考查偶函数的图象特点、二次函数的对称轴公式、二次函数值域的求法.