在△ABC中,求证a/sinA=b+c/sinB+sinC

问题描述:

在△ABC中,求证a/sinA=b+c/sinB+sinC
请详细讲解b/sinB=c/sinC=(b+c)/(sinB+sinC) 是怎么得出来的

等比定理 a1/b1=a2/b2=a3/b3=---=an/bn时,
得(a1+a2+a3+---+an)/(b1+b2+b3+---+bn)=a1/b1
所以由b/sinB=c/sinC 得b/sinB=c/sinC=(b+c)/(sinB+sinC)还没学等比数列呢,用别的方法帮我做一下,谢谢由b/sinB=c/sinC 得sinC/sinB=c/b两边加1得sinC/sinB+1=c/b +1通分得 (sinC+sinB)/sinB=(b+c)/b 变形得(b+c)/(sinB+sinC) =b/sinB既b/sinB=c/sinC=(b+c)/(sinB+sinC)