如图,正方形ABCD内接于接O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QA,则QC/QA的值为?

问题描述:

如图,正方形ABCD内接于接O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QA,则QC/QA的值为?

设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r-m.在⊙O中,根据相交弦定理(圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等),得QAQC=QPQD.即(r-m)(r+m)=mQD,∴QD=r的平方-m的平方/m连接DO,由勾股...