tan2θ=﹣2√2,θ∈﹙π/4,π/2﹚,求[2cos^2(θ/2)-sinθ-1]/[√3sin﹙π/3+θ﹚sin﹙π/3-θ﹚]
问题描述:
tan2θ=﹣2√2,θ∈﹙π/4,π/2﹚,求[2cos^2(θ/2)-sinθ-1]/[√3sin﹙π/3+θ﹚sin﹙π/3-θ﹚]
答
∵tan2θ=2tanθ/(1-tan²θ)=﹣2√2 ∴tanθ/(1-tan²θ)=√2
∴√2tan²θ+tanθ-√2=0 ∴(tanθ-√2)(√2tanθ-1)=0
∴tanθ=√2或tanθ=√2/2 ∵θ∈﹙π/4,π/2﹚∴tanθ>1 ∴tanθ=√2
∵sec²θ=1+tan²θ=3 ∴cos²θ=1/3 sin²θ=2/3
∵θ∈﹙π/4,π/2﹚ ∴cosθ=√3/3 sinθ=√6/3
[2cos²(θ/2)-sinθ-1]/[√3sin﹙π/3+θ﹚sin﹙π/3-θ﹚]=(cosθ-sinθ)/[√3/2(cos2θ-cos2π/3)
=(√3/3-√6/3 )/[√3/2(2×1/3-1+1/2)=[√3/3(1-√2)]/(√3/12)=4(1-√2)