这有道数学课后习题,
问题描述:
这有道数学课后习题,
设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数,证明 (∂x/∂y)*(∂y/∂z)*(∂z/∂x)=-1.
答
①求∂x/∂y:由x=x(y,z)代入方程F(x,y,z)=0,即F(x(y,z),y,z)=0,则把其看成关于未知数y,z的方程,则对其双边关于y求导,得F1'*∂x/∂y+F2'*1+F3'*0=0,于是∂x/∂y=-F2‘/F1’;②求ͦ...