梯形abcd ad平行bc s三角形aod为S1 S三角形boc为S2 证s梯形abcd为更号S1加更号S2的平方
问题描述:
梯形abcd ad平行bc s三角形aod为S1 S三角形boc为S2 证s梯形abcd为更号S1加更号S2的平方
答
设AD=a,BC=b,S1的高为h1,S2的高为H2,
∴S梯形=1/2(a+b)(H1+H2)
=1/2·a(H1+H2)+1/2·b(H1+H2)(1),
又(√S1+√S2)²=S1²+2√S1S2+S2²
=1/2·aH1+2√1/2·aH1·1/2·bH2+1/2·bH2,
=1/2·aH1+1/2·bH2+bH1(∵a:b=H1:H2,∴aH2=bH1)
=1/2·aH1+1/2·bH1+1/2·bH2+1/2·bH1,
=1/2·H1(a+b)+1/2·b(H1+H2)(2)
∵(1)中1/2·a(H1+H2)=1/2·aH1+1/2·aH2=1/2·aH1+1/2·bH1,
=1/2·H1(a+b)和(2)相等,
∴(1)=(2).,