如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF. (1)求证:△CBE∽△AFB; (2)当BE/FB=5/8时,求CB/AD的值.
问题描述:
如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.
(1)求证:△CBE∽△AFB;
(2)当
=BE FB
时,求5 8
的值. CB AD
答
(1)证明:∵AE=EB,AD=DF,
∴ED是△ABF的中位线,
∴ED∥BF,
∴∠CEB=∠ABF,
又∵∠C=∠A,
∴△CBE∽△AFB.
(2)由(1)知,△CBE∽△AFB,
∴
=CB AF
=BE FB
,5 8
又AF=2AD,
∴
=CB AD
.5 4