圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程是( ) A.x2+y2−x−2y−14=0 B.x2+y2+x-2y+1=0 C.x2+y2-x-2y+1=0 D.x2+y2−x−2y+14=0
问题描述:
圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程是( )
A. x2+y2−x−2y−
=01 4
B. x2+y2+x-2y+1=0
C. x2+y2-x-2y+1=0
D. x2+y2−x−2y+
=0 1 4
答
设圆心坐标为(
,b),则由所求圆与抛物线的准线及x轴都相切可得b2 2
+b2 2
=b 所以b=1 故圆心为(1 2
,1)半径R=1 所以圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程为(x−1 2
)2+(y−1)2 =1即x2+y2−x−2y+1 2
=01 4
故选D