圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程是(  ) A.x2+y2−x−2y−14=0 B.x2+y2+x-2y+1=0 C.x2+y2-x-2y+1=0 D.x2+y2−x−2y+14=0

问题描述:

圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程是(  )
A. x2+y2−x−2y−

1
4
=0
B. x2+y2+x-2y+1=0
C. x2+y2-x-2y+1=0
D. x2+y2−x−2y+
1
4
=0

设圆心坐标为(

b2
2
,b),则由所求圆与抛物线的准线及x轴都相切可得
b2
2
+
1
2
=b
  所以b=1 故圆心为(
1
2
,1)半径R=1 所以圆心在抛物线y2=2x(y>0)上,并与抛物线的准线及x轴都相切的圆方程为(x−
1
2
)
2
+(y−1)2 =1
x2+y2−x−2y+
1
4
=0

故选D