设函数f(x)在(0,+∞)内可微,其反函数为g(x),且∫[上下限(1,f(x))]g(t)dt=1/3*{x^(3/2)-8},求f(x)导数

问题描述:

设函数f(x)在(0,+∞)内可微,其反函数为g(x),且∫[上下限(1,f(x))]g(t)dt=1/3*{x^(3/2)-8},求f(x)导数

两边求导:
-g(f(x))*f `(x)=1/2*{(x^1/2)}
注意到g(f(x))=x
f `(x)=-1/2*{x^(-1/2)}-g(f(x))*f `(x)这个不明白这是“变限积分”的求导:被积函数中的变量t换为变限f(x),再对中间变量f(x)求导,下限加负号。再详细点下限怎么变负了