(1+1/1*3)*(1+1/2*4)*(1+1/3*5)*...*(1+1/98*100)怎么做

问题描述:

(1+1/1*3)*(1+1/2*4)*(1+1/3*5)*...*(1+1/98*100)怎么做
(1+1/1*3)*(1+1/2*4)*(1+1/3*5)*...*(1+1/98*100)怎么做

原式=(2²*3²*4²*...*97²*98²*99²)/(1*2*3²*4²*...*98²*99*100)
=2²*99²/(1*2*99*100)
=2*99/100
=99/50