命题p:一次函数y=(a-1)x+2在R上为减函数;命题q:关于x的不等式ax2<ax-1的解集是Ø. (1)若命题q为真命题,试求a的取值范围; (2)若“p且q”为真命题,试求a的取值范围; (3)若“p
问题描述:
命题p:一次函数y=(a-1)x+2在R上为减函数;命题q:关于x的不等式ax2<ax-1的解集是Ø.
(1)若命题q为真命题,试求a的取值范围;
(2)若“p且q”为真命题,试求a的取值范围;
(3)若“p或q”为真命题,试求a的取值范围.
答
∵一次函数y=(a-1)x+2在R上为减函数
∴a-1<0 即P:a<1
∵关于x的不等式ax2<ax-1的解集是Ø.
∴ax2-ax+1≥0恒成立
(i)当a=0时,1≥0恒成立,符合题意
(ii)当a≠0时,
解可得,0<a≤4
a>0 △=a2−4a≤0
综上可得,0≤a≤4
即q:0≤a≤4
(1)若命题q为真命题,则0≤a≤4
(2)若“p且q”为真命题,则命题p,q都为真命题
∴
0≤a≤4 a<1
∴0≤a<1
(3)若“p或q”为真命题,则p,q至少一个为真命题
而当p,q都为假命题时,
,即a>4
a≥1 a<0或a>4
∴当p或q为真时,a≤4