设函数f(x)=ax^2+(b-8)x-a-ab)的两个零点分别是-3和2
问题描述:
设函数f(x)=ax^2+(b-8)x-a-ab)的两个零点分别是-3和2
(1)求函数f(x)的解析式
(2)当函数f(x)的定义域为[0,1]时,求f(x)的值域
答
-3和2就是方程ax^2+(b-8)x-a-ab=0的两个根,由韦达定理
-(b-8)/a=-3+2=-1 解得b-8=a
(-a-ab)/a=-1-b=-3*2=-6,解得b=5;代入上面的狮子可知a=-3
所以f(x)=-3x^2-3x-12
2
f(x)=-3(x^2+x+4) 对称轴为x=-b/2a=-1/2 不在区间[0,1]内,所以函数在[0,1]内位单调
f(0)=-12 f(1)=-18
所以函数在[0,1]内的值域为[-18,-12]