如图,在△ABC中,已知AD⊥BC,垂足为D,AE、BF分别是∠BAC、∠ABC的平分线,AE与BF相交于点O. (1)当∠BAC=50°,∠C=70°时,求∠AED,∠AOB; (2)当∠C=α时,求∠AOB.
问题描述:
如图,在△ABC中,已知AD⊥BC,垂足为D,AE、BF分别是∠BAC、∠ABC的平分线,AE与BF相交于点O.
(1)当∠BAC=50°,∠C=70°时,求∠AED,∠AOB;
(2)当∠C=α时,求∠AOB.
答
(1)∵∠BAC=50°,∠C=70°,
∴∠ABC=180°-∠BAC-∠C=180°-50°-70°=60°,
∵AE、BF分别是∠BAC、∠ABC的平分线,
∴∠BAE=
∠BAC=25°,∠EBO=1 2
∠ABC=30°,1 2
∴∠AED=∠ABE+∠BAE=60°+25°=85°;
∵∠AOB=∠EBO+∠OED,
而∠OED=180°-∠AED=180°-85°=95°,
∴∠AOB=30°+95°=125°;
(2)∵AE、BF分别是∠BAC、∠ABC的平分线,
∴∠CAE=
∠BAC,∠FBE=1 2
∠ABC,1 2
∵∠AOB=∠EBO+∠OED,∠OED=∠CAE+∠C,
∴∠AOB=
∠ABC+1 2
∠BAC+∠C=1 2
(∠ABC+∠BAC+2∠C),1 2
∵∠ABC+∠BAC+∠C=180°,
∴∠AOB=
(180°-∠C+2∠C),1 2
∴∠AOB=90°+
α.1 2