答
(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°
∴AD=BD=DC (2分)
∵AE=CF∴△AED≌△CFD(SAS)
(2)依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9
∴S△EDF=S四边形AEDF−S△AEF=9−(6−x)x=
x2−3x+9
∴y=
x2−3x+9;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°
∴△ADF≌△BDE
∴S△ADF=S△BDE
∴S△EDF=S△EAF+S△ADB
=(x−6)x+9=
x2−3x+9
∴y=
x2−3x+9.
答案解析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;
(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.
考试点:等腰直角三角形;全等三角形的判定与性质.
知识点:本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.