f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y)求f(1)的值若f(6)=1,解不等式f(x+3)-f(1/x)

问题描述:

f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y)
求f(1)的值
若f(6)=1,解不等式f(x+3)-f(1/x)

第一个题令x=y得f(1)=0,第二个题的思路我说一哈,具体的算不算了,思路是把不等式右边的2看成1+1,把其中一个1移动不等式的左边,然后把1代换成f(6),那么左边的式子就可以变成f(x*(x+3)/6),由于f(x)是定义在(0,+∞)上的增函数,所有一定有0

由题目条件
f(1) = f(1/1) = f(1) - f(1) =0
逆用已知条件
f(x+3) - f(1/x)= f((x+3)/(1/x))=f(x^2 + 3x)
题目不等式
f(x^2 + 3x) 所以 f(x^2 + 3x) - f(6) 所以 f((x^2+3x)/6) 又f(x)是增函数,所以
x^2+3x
---------- 6
即 x^2 +3x -36 3+√153 √153 - 3
解得 - ------------ 2 2
【中学数理化解答团】

令x=y得f(1)=0
∵f(x/y)=f(x)-f(y)
∴f(1/6)=f(1)-f(6)=0-1=-1
∴2=1-(-1)=f(6)-f(1/6)=f(36)
不等式f(x+3)-f(1/3)-3
∵f(x)是定义在(0,+∞)上的增函数
∴3(x+3)