如图所示,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD延长线于点E,求证:CE=1/2BD
问题描述:
如图所示,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD延长线于点E,求证:CE=1/2BD
答
首先做辅助线,延长CE交BA的延长线于F
因为角EBF=角EBC,BE=BE,角BEF=角BEC=90度
所以三角形BEF和BEC全等
所以BC=BF,CE=EF
所以CE=1/2 CF
又因为角ABD+ADB=90度,角ECD+CDE=90度,角ADB=CDE
所以角ABD=ECD
因为AB=AC,角DAB=FAC
所以三角形DAB和FAC全等
所以BD=CF
所以CE=1/2 BD
所以BD=2CE