在三角形ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值
问题描述:
在三角形ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值
“要使直径最小,那么C与AB上切点的连线过圆心,即也是直径”这是为什么呢?
答
△PQC是以C为直角顶点的直角△
所以PQ一定是直径
要使直径最小,那么C与AB上切点的连线过圆心,即也是直径
此时,PQ=6×8÷10=4.8