柯西不等式应用条件是所有实数吗

问题描述:

柯西不等式应用条件是所有实数吗

设a1,a2,...,an,b1,b2,...,bn为任意两组实数,则有
(a1*x-b1)^2+(a2*x-b2)^2+...+(an*x-bn)^2>=0
(a1^2+a2^2+...+an^2)*x^2-2x(a1b1+a2b2+...+anbn)+(b1^2+b2^2+...+bn^n)>=0
左边是关于x的2次函数,其值大于等于零,故判别式
4(a1b1+a2b2+...+anbn)^2-4(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^n)(a1b1+a2b2+...+anbn)^2这是柯西不等式,从证明过程看,对所有实数均成立.