已知:在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC的延长线交于点F,若CF=4,BC=5,则DF=_.

问题描述:

已知:在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC的延长线交于点F,若CF=4,BC=5,则DF=______.

连接FA,如下图所示:
∵EF垂直平分AD,
∴FA=FD,∠FAD=∠FDA.
即∠FAC+∠CAD=∠B+∠BAD.
又∠CAD=∠BAD.
故∠FAC=∠B;又∠AFC=∠BFA.
∴△ABF∽△CAF.
∴AF2=CF•BF=4•(4+5)=36
∴DF=AF=6
故答案为:6