已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法: ①图象的开口一定向上; ②图象的顶点一定在第四象限; ③图象与x轴的交点有一个在y轴的右侧. 以上

问题描述:

已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:
①图象的开口一定向上;
②图象的顶点一定在第四象限;
③图象与x轴的交点有一个在y轴的右侧.
以上说法正确的个数为(  )
A. 0
B. 1
C. 2
D. 3

∵a>0,故①正确;
∵顶点横坐标-

b
2a
<0,故顶点不在第四象限,②错误,
∵a>0,
∴抛物线开口向上,
∵c<0,
∴抛物线与y轴负半轴相交,
故与x轴交点,必然一个在正半轴,一个在负半轴,故③正确.
故选C.