如图二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.(1)试确定b、c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.参考公式:顶点坐标(−b2a,4ac−b24a).

问题描述:

如图二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.

(1)试确定b、c的值;
(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.
参考公式:顶点坐标(−

b
2a
4ac−b2
4a
).

(1)将A、B两点坐标代入解析式,有:

0=1−b+c
0=9+3b+c
(1分)
解得:b=-2,c=-3(2分)
(2)在函数y=x2+bx+c中a=1,b=-2,c=-3,因而-
b
2a
=1
4ac−b2
4a
=-4
∴抛物线的顶点M(1,-4)
在函数y=x2-2x-3中,令x=0,解得y=-3
∴C点的坐标是(0,-3),
把y=-3代入函数y=x2-2x-3,
解得x=2则D点的坐标是(2,-3),CD=2,CM=
(1−0)2+(−4+3)2
=
2

同理DM=
2

∴△MCD是等腰直角三角形.
答案解析:(1)把A和B两点的坐标代入函数解析式,就可以得到一个关于b,c的方程组,解方程组就可以求出b,c的值.
(2)根据抛物线的顶点坐标的公式代入就可以求出顶点坐标,在抛物线的解析式中,令x=0,解得C点的坐标;C点与D的纵坐标相同,把纵坐标的值代入函数解析式就可以得到D点的坐标,根据坐标就可以求出△CDM的三边的长度.从而判断三角形的形状.
考试点:二次函数综合题.

知识点:本题主要考查了待定系数法求函数解析式,利用公式法求函数的解析式,以及利用勾股定理的逆定理判断三角形是直角三角形.