在四棱锥P-ABCD中,PD垂直于面ABCD,PD=DC=1,AB=2,AB//DC,∠BCD=90°,求点A到平面PBC的距离.

问题描述:

在四棱锥P-ABCD中,PD垂直于面ABCD,PD=DC=1,AB=2,AB//DC,∠BCD=90°,求点A到平面PBC的距离.
这是市统考上的一题.一字不差.感觉不告诉BC没法求似的.

延长CD到E,使CE=2,则CE=AB,ECBA为矩形.则显然△PEC为等腰直角三角形,且PE=√2
由于PD⊥平面ABCD,因而有PD⊥BC,再BC⊥DC ,所以BC⊥平面PDC,从而得到PE⊥BC,而△PEC为等腰直角三角形:PE⊥PC,所以PE⊥平面PBC,E到平面PBC的距离=PE=√2
而由AE//BC知,A与E到平面PBC的距离相等.
另:只要知道∠BCD,就能确定平面PBC,这与BC的长度无关.