已知函数f(x)=2sin(2x+π/6) 当X∈[-π,π]时,求f(x)的单调递减区间

问题描述:

已知函数f(x)=2sin(2x+π/6) 当X∈[-π,π]时,求f(x)的单调递减区间

令 2kπ+π/2≤2x+π/6≤2kπ+3π/2
则 kπ+π/6≤x≤kπ+2π/3
令k=-1,0,得
 f(x)在∈[-π,π]上的减区间为[-5π/6,-π/3]和[π/6,2π/3].