f(x)在【0,3】连续,(0,3)可导,f(0)+f(1)+f(2)=3.且f(3)=1 证明至少在(0,3)有一点t使它导数=0
问题描述:
f(x)在【0,3】连续,(0,3)可导,f(0)+f(1)+f(2)=3.且f(3)=1 证明至少在(0,3)有一点t使它导数=0
答
你用反证法,假设f'(x)总不为0,由于f在[0,3]连续,(0,3)可导
不妨设f'(x)>0
于是f(0)>f(1)>f(2)>f(3)=1,f(0)+f(1)+f(2)>3,与假设矛盾,设f'(x)