在数列{an}中,an=2n+3,前n项和Sn=an2+bn+c,n∈N*,其中a,b,c为常数,则a-b+c=( ) A.-3 B.-4 C.-5 D.-6
问题描述:
在数列{an}中,an=2n+3,前n项和Sn=an2+bn+c,n∈N*,其中a,b,c为常数,则a-b+c=( )
A. -3
B. -4
C. -5
D. -6
答
令n=1,得到a1=2+3=5,
所以Sn=
=n(a1+an) 2
=n2+4n,(5+2n+3)n 2
而Sn=an2+bn+c,则an2+bn+c=n2+4n,
所以a=1,b=4,c=0,
则a-b+c=1-4+0=-3.
故选A