证明:若函数y=f(x),x为实数满足f(x)=f(x-a)+f(x+a)(a为实数),则f(x)是周期函数,且6a是它的一个周期

问题描述:

证明:若函数y=f(x),x为实数满足f(x)=f(x-a)+f(x+a)(a为实数),则f(x)是周期函数,且6a是它的一个周期

f(x)=f(x-a)+f(x+a).
得到:f(x+a)=f(x)+f(x+2a).
两式相加得f(x-a)+f(x+2a)=0.
即:f(x+2a)+f(x+5a)=0.
两式相减得f(x-a)=f(x+5a).
即得:f(x)=f(x+6a).
∴函数f(x)的周期为6a.