设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
问题描述:
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
求A
答
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
求A