如图,rt△abo的顶点在原点,oa=12,ab=20,∠aox=30°,求a、b两点的坐标,并求△abo的面积.
问题描述:
如图,rt△abo的顶点在原点,oa=12,ab=20,∠aox=30°,求a、b两点的坐标,并求△abo的面积.
完整格式谢谢
图
答
根据勾股定理,有OB=16则:S△abo=1/2*OA*OB=1/2*12*16=96当直角三角形在x轴上方时Ax=OA*cos30°=12*√3/2=6√3Ay=OA*sin30°=12*1/2=6Bx=-OB*cos60°=-16*1/2=-8By=OB*sin60°=16*√3/2=8√3即 A(6√3,6) B(-8,8√3)...