求ln√(x²+y²)的导数的详解

问题描述:

求ln√(x²+y²)的导数的详解
ln√(x²+y²)对x求导

z = ln√(x²+y²)= (1/2) ln( x²+y² )δz/δx = (1/2) * 1/( x²+y² ) * 2x = x /( x²+y² )δz/δy = (1/2) * 1/( x²+y² ) * 2y= y/( x²+y²)ln√(x²+y²)对x求导答案是(1/√(x²+y²)) ×1/2*(xˆ2+yˆ2)ˆ-1/2*(2x+2y*y')题目中是把y看做x的函数,从而z是x的一元函数。z = (1/2) ln( x²+y² ),表达式先化简一下,后面简单。令 u = x²+y² ,du/dx = 2x + 2y * y'dz/dx = (1/2) * 1/u * du/dx = ( x + y * y') / (x²+y² )