设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎么来的

问题描述:

设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛
答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎么来的