在三角形abc中,ab=ac,内切圆o与边bc,ac,ab 分别切于d,e,f,若角c=30度,ce=2√3,求AC

问题描述:

在三角形abc中,ab=ac,内切圆o与边bc,ac,ab 分别切于d,e,f,若角c=30度,ce=2√3,求AC

因为AB=AC,所以BC边上的高一定过圆心,又因为CE=CD=2√3,在直角三角形ADC中就可以求了,答案是4.