f(x)为可导 切满足方程∫[1,x]tf(t)dt=1+f(x) 求f(x)
问题描述:
f(x)为可导 切满足方程∫[1,x]tf(t)dt=1+f(x) 求f(x)
方程f(x)为可导 且满足方程∫[1,x]tf(t)dt=1+f(x) 求f(x)
答
两边求导有
xf(x)=f'(x)
解这个微分方程有
f(x) = C e^(x²/2)
注意到f(1)=-1
所以 f(1)=Ce^(1/2)=-1,得C=-1/根号e
所以f(x) = =-1/根号e * e^(x²)