如果复数z满足丨z-i丨=2,那么丨z+1丨的最大值是

问题描述:

如果复数z满足丨z-i丨=2,那么丨z+1丨的最大值是

|z-i|=2表示平面上以A(0,1)为圆心,2为半径的圆,那么|Z+1|表示圆上一点到B(-1,0)的距离
所以,距离的最大值是AB+半径=根号2+2


设z=a+bi

/z-i/=√a²+(b-1)²=2
∴a²+(b-1)²=4
这是一个以圆心为(0,1),半径为2的圆
/z+1/²=(a+1)²+b²
这是一个以圆心为(-1.0),半径为r的圆
要求/z+1/最大,只需求圆的半径最大
两圆的圆心距为:
√(0+1)²+(1-0)²=√2
∴r=√2+2