如果函数y=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是(  ) A.(0,23] B.[33,1) C.(0,3] D.[32,+∞)

问题描述:

如果函数y=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是(  )
A. (0,

2
3
]
B. [
3
3
,1)

C. (0,
3
]

D. [
3
2
,+∞)

函数y=ax(ax-3a2-1)(a>0且a≠1)可以看作是关于ax的二次函数,
若a>1,则y=ax是增函数,原函数在区间[0,+∞)上是增函数,
则要求对称轴

3a2+1
2
≤1,矛盾;
若0<a<1,则y=ax是减函数,原函数在区间[0,+∞)上是增函数,
则要求当t=ax(0<t<1)时,
y=t2-(3a2+1)t在t∈(0,1)上为减函数,
即对称轴
3a2+1
2
≥1,
a2
1
3

∴实数a的取值范围是[
3
3
,1)

故选B.