抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且此两点的横坐标分别为x1,x2,直线与x轴的交点的横坐标是x3,则恒有(  )A. x3=x1+x2B. x1x2=x1x3+x2x3C. x3+x1+x2=0D. x1x2+x1x3+x2x3=0

问题描述:

抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且此两点的横坐标分别为x1,x2,直线与x轴的交点的横坐标是x3,则恒有(  )
A. x3=x1+x2
B. x1x2=x1x3+x2x3
C. x3+x1+x2=0
D. x1x2+x1x3+x2x3=0

y=ax2
y=kx+b,k≠0

∴ax2=kx+b,整理得ax2-kx-b=0,
由题设条件知x1+x2
k
a
x1x2=−
b
a
x3=−
b
k

∴x1x3+x2x3=(x1+x2)x3=
k
a
×(−
b
k
)
=-
b
a
=x1x2
故选B.
答案解析:由题意知
y=ax2
y=kx+b,k≠0
,整理得ax2-kx-b=0,由题设条件知x1+x2
k
a
x1x2=−
b
a
x3=−
b
k
.由此可知x1x3+x2x3=(x1+x2)x3=
k
a
×(−
b
k
)
=-
b
a
=x1x2
考试点:直线与圆锥曲线的综合问题.

知识点:本题考查直线和抛物线的位置关系,解题时要认真审题,仔细解答.