已知曲线C1:y=e^x与C2:y=-1/e^x,若c1c2分别在点p1,p2处的切线是同一条直线l,试l的方程
问题描述:
已知曲线C1:y=e^x与C2:y=-1/e^x,若c1c2分别在点p1,p2处的切线是同一条直线l,试l的方程
答
C1:y'=e^x,C2:y'=e^(-x),若存在相同直线,则e^(x1)=e^(-x2),又e^x是单调递增函数,所以x1=-x2,即x1、x2关于y轴对称.因为直线过x1,x2,即过点(x1,e^(x1),(x2,-1/e^(x2)=(-x1,-e^(x1))所以直线过原点,可设其为y=kx.k=y'...