若函数y=1/3x平方-1/2 ax平方+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a的取值范

问题描述:

若函数y=1/3x平方-1/2 ax平方+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a的取值范

函数f(x)的导数f′(x)=x2-ax+a-1.
令f′(x)=0,解得x=1或x=a-1.
当a-1≤1,即a≤2时,函数f(x)在(1,+∞)上为增函数,不合题意.
当a-1>1,即a>2时,函数f(x)在(-∞,1)上为增函数,
在(1,a-1)内为减函数,在(a-1,+∞)上为增函数.
依题意应有
当x∈(1,4)时,f′(x)<0,
当x∈(6,+∞)时,f′(x)>0.
所以4≤a-1≤6,解得5≤a≤7.
所以a的取值范围是[5,7].

由图像可知,图形的开口向上,对称轴为(3-3a)/(2-3a).
所以1/3-1/2a>0,4≤(3-3a)/(2-3a)≤6,解得a∈(5/9,3/5)